Cheng Low NOx (CLN[®])

State-of-the-Art Emissions Control Technology

Introduction to CLN Technology Metric Version

Developed by:

International Power Technology, Inc. 1042 W. Hedding Street, Suite 100 San Jose, California 95126

> Phone: 408-246-9040 Web: www.intpower.com

CLN Executive Summary

During the course of this presentation IPT will:

- 1) Describe in brief IPT's corporate history and the Cheng Low NOx (CLN) technology development timeline
- 2) Provide a summary of the CLN Demonstration Projects and their current operational status
- 3) Describe the principles of the CLN technology
- 4) Show how the CLN technology is easy to implement and uses mostly stock OEM engine hardware
- 5) Describe in detail the benefits of CLN including:
 - a) Lower NOx and CO
 - b) Cheaper to implement than DLE, SCR, and sometimes water
 - c) Increased power and peak (kW) shaving capability
 - d) Decreased turbine fuel consumption
 - e) Decreased CTIT at constant power resulting in turbine overhauls savings

IPT TIMELINE

1974	IPT founded by Dr. Dah Yu Cheng	
1982 - 1983	IPT Co-Develops the Allison 501-KH dubbed the "Cheng Cycle"	
1984	Startup of first commercial Cheng Cycle system startup at San Jose State University. Owned and Operated by IPT.	
1984 - 1988	IPT develops five additional Cheng Cycle installations in California: Frito- Lay, Sunkist Growers, Hershey Chocolate, SRI International, and Loma Linda University.	
1986 – 1990	IPT licenses the Cheng Cycle technology to partners around the world: Kawasaki and Hitachi Zosen (Japan), ELIN (Europe), DETCO (Australia), and US Turbine (North America).	
1991	IPT is acquired by its licensee ELIN, a large Austrian industrial holding company.	
1999	Management Buy-Out	
2003 - Present	IPT signs exclusive worldwide CLN License – Startup of first CLN Unit – Demo site operational February 2005.	

Cheng Low NOx (CLN) Demonstration Site SRI International Cogeneration Project Operational Since March 2005

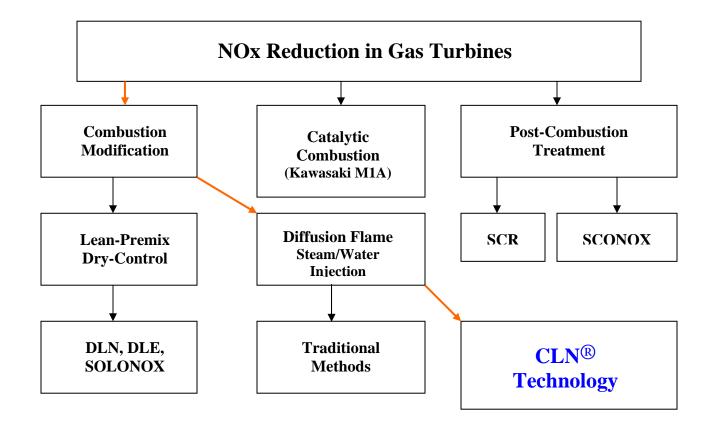
International Power Technology Germany KB-7 – DLE to CLN Conversion - Operational April 2006

Project Status

International Power Technology

<u>SRI – KB5 - CLN Demonstration Project Status</u>

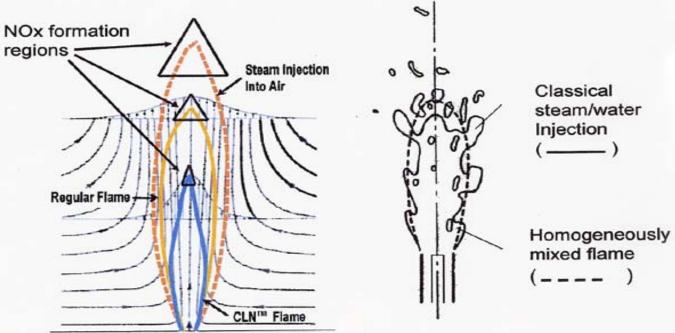
- 1) Currently IPT has achieved sub 19 mg/m3 NOx and CO at 1035 Deg C (CTIT) at 2.35 s/f ratio
- 2) Testing continues to achieve up to 4 to 1 Steam to Fuel Ratios
- 3) CLN has been operational for over 18 months without any problems
- 4) Liners tested: LE-2, LE-3.1, LE-3.2,

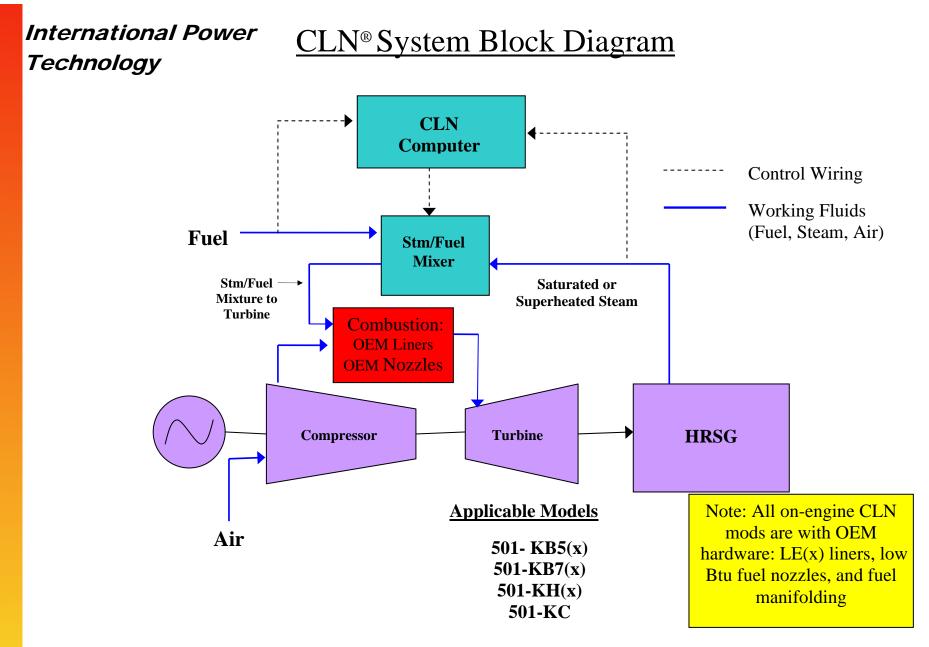

<u>Germany – KB7 - CLN Demonstration Project Status</u>

- 1) Became operational April 15, 2006
- 2) DLE conversion to CLN due to high DLE costs Running LE-2 Combustion Liners
- 3) Site steam pressure limits steam-to-fuel ratio to .6 to 1 at 1057 Deg C (CTIT)
- 4) All expected emissions achieved

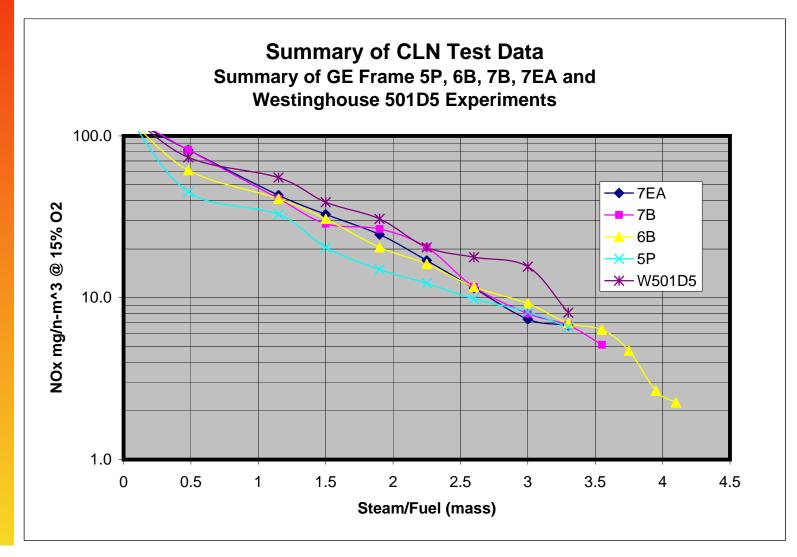
Potential CLN Retrofit Candidates

- 1) Those that want to convert from the OEM DLE to less costly low emissions system
- 2) Those looking to convert from water injected systems
- 3) Those looking to reduce emissions due to regulatory requirements
- 4) Those looking to voluntarily reduce emissions to sell the NOx and CO emissions offsets on the open market
- 5) New Installations requiring New Source Review emissions limits

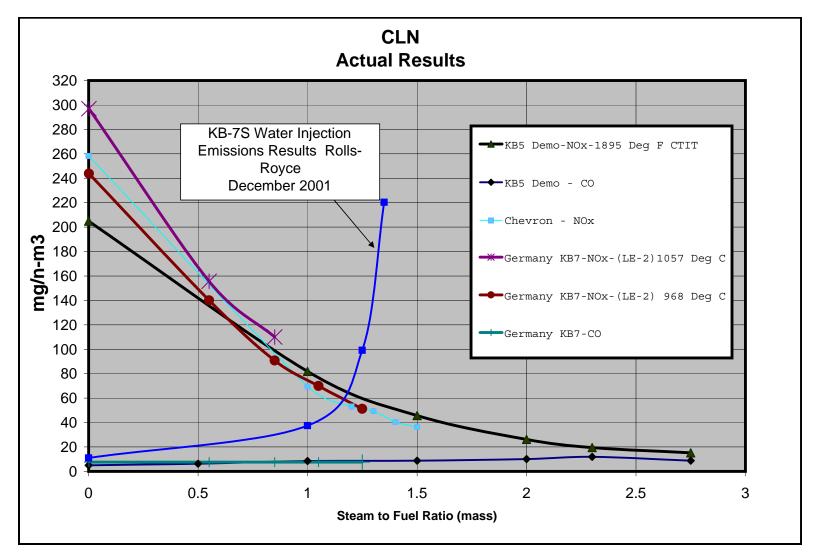

Available NOx Reduction Technologies



Principal of CLN®

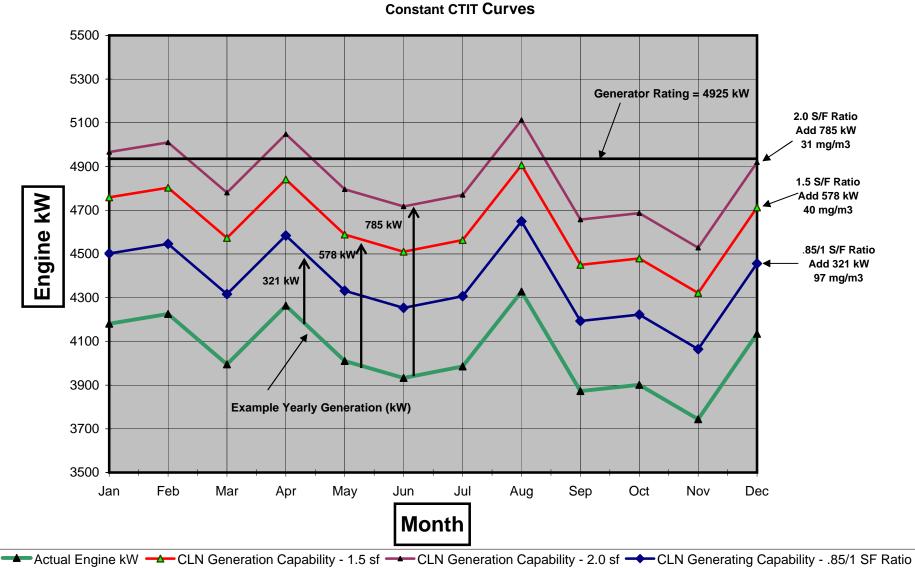

CLN reduces emissions by mixing steam with natural gas prior to combustion in the turbine. CLN requires a homogeneous mixing of steam and fuel to enable the highest jet momentum by higher volume flow:

- to enhance the diffusion rate of oxygen
- to shrink the flame surface envelope
- to reduce or block N2 penetration into the flame structure
- to reduce residence time of N2 and O2 in the hot zone
- to reduce hot zone temperature



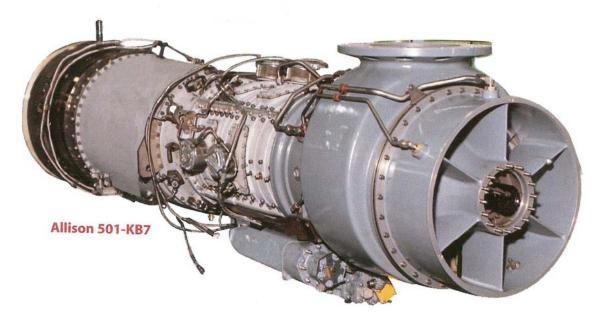
CLN Atmospheric Tests Results

International Power Technology


Page 11 of 20

CLN Peak Shaving Capability

Effects of Adding CLN steam


Source: Roll-Royce/Allison Performance Program @ 38 Deg C CIT

All values are approximate

OEM Has Been Injecting Steam into the 501-K(x) Gas TurbineFor Over 20 Years

Rolls-Royce/Allison Installation Design Manual Limits on Steam Injection						
Model	Units	Case Steam Limit	Nozzle Steam Limit			
501-KH	kg/sec	2.72	.68			
501-KB7 and KB5	kg/kg		2.0			
501-KB7 and KB5	kg/sec		.68			
Typical CLN Operating Range	kg/sec		.31 to .68			
	kg/kg		.85 to 2.0			

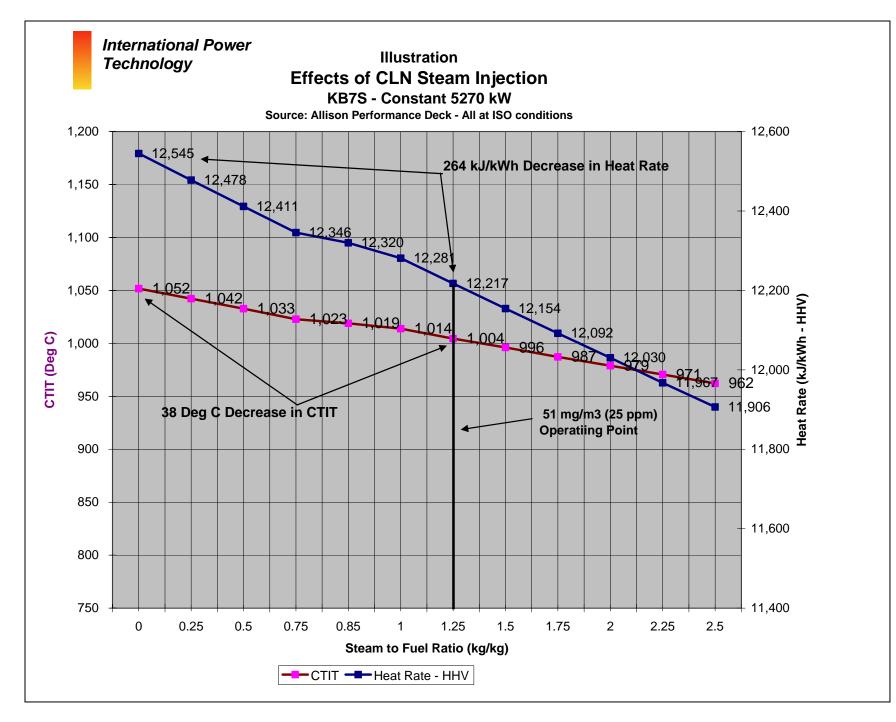
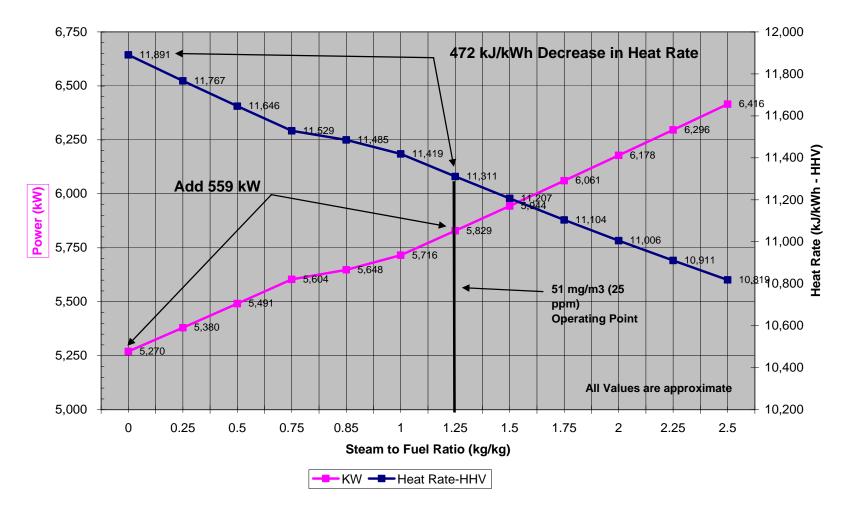
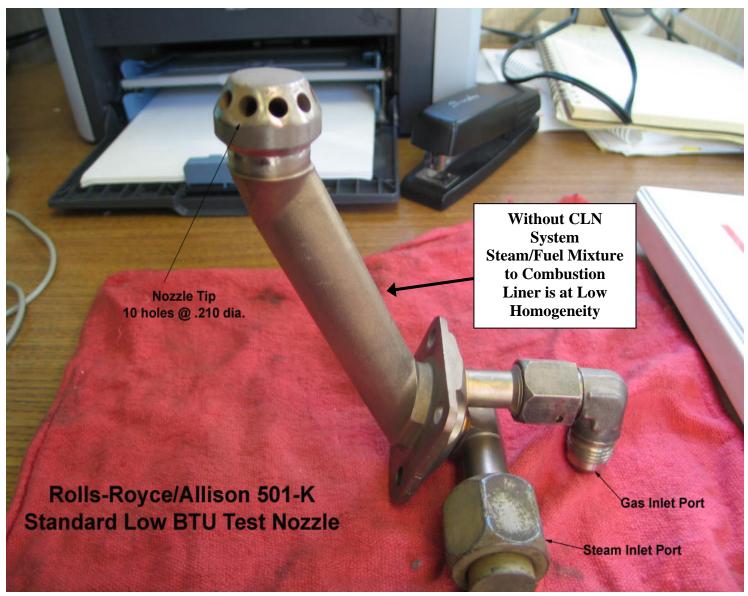




Illustration Effects of CLN Steam Injection KB7S - Constant CTIT @ 1925 Source: Allison Performance Deck - all at ISO conditions

OEM Nozzle Used on Nozzle Steam Injected 501-K(x) Engines OEM Currently Mixing Steam and Fuel Prior to Entering Combustion Liner

Standard OEM LE-2 Test Liner

Page 17 of 20

CLN Test Liner – LE-3.2

Parameter	Units	Water Injection	CLN Steam @ Constant kW	
				-
CTIT	Deg C	1035	1035	<u> </u>
SF Ratio	steam-water/fuel	1.0	1.15	Conclusio
Constant kW	kW	4,059	4,060]
Heat Rate	kj/(kWe*hr) - LHV	12,790	12,008	Overall Operat
Fuel Flow	Gj/hr - LHV	51.91	48.75	Cost of
Fuel Flow	kg/hr	1093	1026	CLN Steam
Unit Cost of Fuel	\$/Gj	7.5	7.5	injection sar
Cost to Operate	\$/hr	-433	-406	as water
Delta Fuel Costs	\$/hr		26.3	Injection
Delta Efficiency	%		6.08%	
Steam Flow	kg/hr	0	1176	
Cost of D.B. Steam	\$/hr	0	25.9	
Delta Fuel and Steam	\$/hr		0.39	
verall Cost Difference	%		-0.09%	

Assumes: 1) non-fuel water injection cost are the same as steam injection costs

2) any boiler efficiency changes between water and steam are excluded

3) all values are from Rolls-Royce/Allison Performance Deck

4) all injection steam being produced from duct burner at 90% efficiency

5) benefits of increased combustion liner life not included

Type of Customer	Is CLN Profitable ?	Comments
Water to Steam only	Maybe	Depends on water/fuel ratio and life of liners
Have at least 15% extra steam available	Yes	Payback increases with decreased steam costs
Need extra power	Yes	Cost per kWh from CLN is less than adding additional generation
Need lower emissions	Yes	Cost of CLN emissions control is less than alternatives
Have DLE	Yes	DLE is very expensive - 14th steage bleed system has high heat rates
Have/need SCR	Yes	CLN is much cheaper than SCR

- 1 Produces lower NOx and CO
- 2 Increase power output in excess of 785 kW
- 3 Reduces turbine heat rate and fuel consumption
- 4 Uses OEM fuel nozzles and combustion liners
- 5 Eliminates the need for SCR and DLE systems
- 6 Increases hardware lifetime: reduced firing temperature and better flame pattern
- 7 Eliminates water injection and reduces wear and tear on combustion liners